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A B S T R A C T

The flourish of current visual tracking cannot be separated from powerful pre-trained backbone networks. Even 
the pre-trained networks frozen and used merely as a feature extractor can also obtain substantial tracking 
performance. However, how to acquire target-aware features suitable for visual tracking has always been a hot 
research topic to improve tracking robustness. Inspired by prompt learning, we propose the color prompt encoder 
to guide the acquisition of target-aware capability. Concretely, the color histogram features as a naive feature 
expression can provide complementary cues, so we employ color histogram features to construct the color target 
probability as a color prompt. Immediately after, the color prompt constructed is integrated into the unified 
tracking network to guide the generation of specific target feature maps. Furthermore, Discriminative Correlation 
Filters (DCF)-based trackers with an online update module can effectively adapt to constantly changing objects, 
so it is imperative to ensure that credible prediction samples are utilized to refine the tracking model online. 
Hence, we further devise an uncomplicated position offset constraint method based on target motion inertia to 
screen more reliable prediction results. Adequate experimental results reveal the validity of the color prompt 
encoder and position offset constraint in the DCF tracking framework. Our trackers can perform favorably against 
recent and far more sophisticated trackers on multiple public benchmarks. Concretely, our proposed tracker 
achieves a 0.815 robustness and 0.305 expected average overlap (EAO) on Visual Object Tracking (VOT) 2020 
dataset, which is superior to the baseline in robustness (+2.6 %) and EAO (+0.8 %).

1. Introduction

Visual tracking as a sub-direction of computer vision is intended to 
predict the target states in a video sequence, notably when only an initial 
target state is provided. With deep learning shining brightly in this field, 
two prevailing Discriminative Correlation Filters (DCF)-based and 
Siamese-based trackers (Javed et al., 2023) have achieved significant 
development of tracking until now, yet this task is always troubled by 
some intricate challenge factors, e.g., background clutter, scale varia
tion, and obstructions.

At present, DCF-based (Christoph et al., 2022; Wang et al., 2021; 
Martin et al., 2017, 2019; Bhat et al., 2019; Henriques et al., 2015) and 
Siamese-based (Yan et al., 2021; Chen et al., 2021; Bo et al., 2018; 

Bertinetto et al., 2016a; Cui et al., 2024) frameworks receive widespread 
attention. Both core ideologies exploit trainable deep networks to learn a 
target appearance model online or offline. Siamese-based trackers 
include two sub-branches, with the inputs for each branch being the 
template and the search region. Specifically, the template is twice as 
small as the search region. SiamFC(Bertinetto et al., 2016a) as a prim
itive Siamese tracker constructs the tracking task as a template matching 
process, which is to match the most similar template from the search 
image region. Siamese trackers adopt a concise network structure to 
obtain commendable tracking effect and real-time speed, this paves the 
way for the application of deep learning in visual tracking. The entire 
Siamese tracking architecture can be subdivided into three parts: feature 
extraction, feature fusion, and prediction head. In feature extraction, 
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apart from the AlexNet used by early SiamFC (Bertinetto et al., 2016a), 
the frequently-used Convolutional Neural Network (CNN) is ResNet (He 
et al., 2016), which has many versions, among which ResNet50 is the 
most commonly used option (Yan et al., 2021; Chen et al., 2021). With 
the development of Transformer (Ashish et al., 2017) in tracking, there 
are more and more works (Cui et al., 2024; Ye et al., 2022) using Vision 
Transformer (ViT) (Alexey et al., 2021) as a feature backbone to replace 
CNN in extracting feature expressions. Additionally, through adopting 
diverse feature fusion techniques (Chen et al., 2021; Bo et al., 2018; 
Bertinetto et al., 2016a; Bin et al., 2021; Jun et al., 2024) and 
anchor-based or anchor-free prediction heads (Bo et al., 2018; Cui et al., 
2024; Bin et al., 2021; Chen et al., 2022a), Siamese-based trackers 
repeatedly refresh the new state-of-the-art records on multiple bench
marks (Huang et al., 2021; Fan et al., 2019; Matthias et al., 2018). 
Considering that Transformer can achieve long-distance interaction and 
simplify the feature extraction and fusion of Siamese trackers, the single 
branch architecture (Ye et al., 2022; Cui et al., 2023; Chen et al., 2022b) 
using ViT (Alexey et al., 2021) to jointly optimize feature extraction and 
fusion has been proven to be feasible. However, Siamese trackers exploit 
the limited template information to couple into the search image patch, 
and this template normally only adopts the initial template and is not 
updated (Chen et al., 2021; Bo et al., 2018; Bertinetto et al., 2016a). 
Although there are also some Siamese trackers (e.g., STARK (Yan et al., 
2021), MixFormer (Cui et al., 2024)) that introduce a dynamic template 
to update the template, they need an additional score prediction branch 
and two-stage training. Compared with DCF-based trackers, Siamese 
trackers without the update networks are less prone to cumulative errors 
in the inference stage, yet it is relatively susceptible to drastic appear
ance changes and similar objects.

Relatively speaking, DCF-based trackers (Christoph et al., 2022; Bhat 
et al., 2019; Henriques et al., 2015) can train a discriminative model 
prediction from far more background information, especially recent 
DiMP (Bhat et al., 2019; Martin et al., 2020) and ToMP (Christoph et al., 
2022) can also adopt a trainable deep learning network architecture. In 
addition, DCFs are equipped with an online update module to regulate 
discriminative appearance model updates. We divide the DCFs into four 
components: feature extraction, target localization, target scale esti
mation, and online updating module. The related contents of each 
component will be elaborated in Sec. 2. Although DCF-based trackers 
have obtained impressive performances on prevailing benchmarks, we 
are aware that these tracking methods have two research points that 
need to be further perfected. 1) In visual tracking, feature extraction has 
always been the top priority before tracking, a fabulous feature repre
sentation is positive for training appearance models. Looking at the 
progress of object tracking, it is not a new thing to achieve improved 
tracking performance by simply replacing the feature extraction back
bone network. ResNet (He et al., 2016) as an excellent CNN backbone 
network can be confirmed as a preferred feature extractor among 
numerous CNNs. Furthermore, how to transfer the pre-trained feature 
attributes from image classification into more suitable feature attributes 
for visual tracking has always been a research topic worth exploring. 
Essentially, visual tracking focuses on target perception, with the aim of 
perceiving the target to be tracked from the image search area. Herein, 
we propose a novel color prompt encoder, the color prompt constructed 
from color histogram features is explicitly encoded into an attention 
map to guide the generation of target-aware features. The color prompt 
encoder we propose not only supplements the information of conven
tional color features, but also enhances the target-aware feature ex
pressions of the original feature extraction backbone features through 
color attention fusion mode. 2) Another thorny problem worth discus
sing in visual tracking is how to effectively update models online. Since 
the tracked target has irregular changes, it is reasonable for the tracking 
model to be updated appropriately to accommodate its dynamic vari
ability. In this respect, linear interpolation (Martin et al., 2017; Henri
ques et al., 2015) or optimization with memory (Martin et al., 2019; 
Bhat et al., 2019) schemes are typically employed. No matter which 

method is used, it is unworkable to blindly update the model with the 
predicted target, which will cause tracking the wrong target. Therefore, 
DCF-like trackers (e.g., SuperDiMP and ToMP) adopt a hard-negative 
mining (HNM) strategy to predict target tracking status from the ac
quired response map, which is utilized to control further model updates 
for achieving more advanced target localization. The HNM approach 
assesses the target tracking status via the target location and response 
map, but does not consider the motion inertia of the temporal target. 
Consequently, we present a position constraint mechanism to improve 
its existing shortcomings from the temporal position offset aspect, and 
this method has the advantages of low cost and portability.

To verify the practicability of our designed Color Prompt Encoder 
(CPE) and Position Constraint Mechanism (PCM), we integrate them 
into the recent DCF-based trackers (i.e., SuperDiMP(Bhat et al., 2019; 
Martin et al., 2020) and ToMP (Christoph et al., 2022)) for ablation 
analysis and comparative experiments. Our trackers show comparative 
performances on six challenging benchmarks. In brief, our contributions 
have four aspects: 1) Enlightened by the Staple (Bertinetto et al., 2016b) 
tracker, we adopt color histograms to construct color target probability 
features, and propose multiple combinations of up-sampling and patch 
embedding with attention and Multi-layer Perceptron (MLP) methods to 
achieve effective integration of shallow color features and deep CNN 
features. 2) Inspired by prompt learning, we use Hanning window 
pre-processing the color target probability to obtain the color prompt, 
and the prompt is encoded into attention features to guide the acquisi
tion of target-aware features. 3) To mitigate the impact of inaccurate 
tracking results on the online model update process, we propose a po
sition offset constraint method to force the tracked target to meet con
ventional motion inertia. 4) We combine the proposed two solutions into 
SuperDiMP and ToMP trackers to implement comprehensive ablative 
studies and state-of-the-art experiments on multiple popular tracking 
benchmarks. Our approach obtains promising performances against 
other state-of-the-art trackers.

2. Related work

In the context of deep learning, DCF-based and Siamese-based 
trackers have achieved significant development. The proposed CPE 
and PCM modules are designed based on the DCF framework. The CPE 
focuses on improving feature extraction to obtain feature representa
tions of specific target regions, while the PCM focuses on discussing how 
to better determine the feasibility of predicting targets and enhance the 
screening accuracy of online model update modules. Hence, the section 
mainly outlines DCF-based trackers and relevant research works in vi
sual tracking.

Discriminative Model Prediction: DCFs(Christoph et al., 2022; 
Martin et al., 2017, 2019; Henriques et al., 2015) minimize an objective 
of least-squares regression to learn the discriminative target model. The 
target model is utilized to discriminate the foreground target from the 
background context, especially the target model needs to be updated in 
inference. In the early DCF framework, the target model refers to a 
correlation filter (Martin et al., 2017; Henriques et al., 2015), KCF 
(Henriques et al., 2015) as a classic DCF can timely learn a correlation 
filter via Fast Fourier Transform, thus DCF-based trackers have become 
synonymous with real-time trackers, especially real-time tracking on 
CPU devices. Now the target model is designed as a convolution kernel 
(Christoph et al., 2022; Martin et al., 2019; Bhat et al., 2019) in the deep 
DCF architecture, the convolution kernel is trained to bear condensed 
and generalized target representation. Based on the structure of repre
sentative discriminative model predictions such as ATOM and DiMP 
(Martin et al., 2019; Bhat et al., 2019), we can split these trackers into 
feature extraction, target localization, target scale estimation, and on
line model update. Firstly, the feature extraction methods has gone 
through hand-crafted (Henriques et al., 2015) to CNN (Martin et al., 
2019) and then to ViT (Alexey et al., 2021). Considering single feature 
difficult to handle various complex scene changes, multi-feature fusion 
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(Bertinetto et al., 2016b; Bhat et al., 2018) naturally becomes a favor
able supplementary means. Current DCF-based trackers mostly adopt 
ResNet (He et al., 2016) as the feature extraction backbone, and 
combine it with Transformer structure (Ashish et al., 2017) to achieve 
target localization and bounding box regression (Christoph et al., 2022). 
Secondly, the target features obtained from the feature extraction pro
cess are inputted into the discriminative model prediction to learn the 
target model, which is used to process the search image region of the 
next frame to determine the new target localization. The previous DCFs 
(Martin et al., 2017; Henriques et al., 2015) obtained the correlation 
filter through minimizing ridge regression formula in the Fourier 
domain, but the boundary effects (Danelljan et al., 2015) and the lack of 
end-to-end deep features led to a decrease in the competitiveness of DCF. 
Bhat et al. (2019) proposed a new-type DCF-like method, that is 
Discriminative Model Prediction (DiMP), DiMP learns the weights of the 
convolution kernel in a trainable way and further updates the kernel 
weights using an optimization method. The ability of the discriminative 
target model is substantially heightened by probabilistic regression 
(Martin et al., 2020). ToMP(Christoph et al., 2022) innovatively adopts 
Transformer to devise the discriminative model prediction instead of the 
optimization-based model prediction (Bhat et al., 2019). Finally, the 
target scale estimation has also made substantial progress from the 
conventional multi-scale search methods (He et al., 2023a) to the 
network learning branches (Christoph et al., 2022; Martin et al., 2019). 
Unlike the current Siamese-based methods using corner predict head 
(Yan et al., 2021; Bin et al., 2021) directly locate and estimate the 
location and scale state of the target, the trackers based on the 
discriminative model prediction predict the target scale after accom
plishing the target localization.

Feature Extraction: The ability to extract features largely de
termines the upper limit of tracking performance. Therefore, our pri
mary research motivation is how to enhance the effect of feature 
expression, especially the target-aware ability. We should know that 
exploited discriminative and generalizable features are particularly 
vital, a variety of visual features have been investigated in visual 
tracking. ECO(Martin et al., 2017) tested hand-crafted features, 
pre-trained deep features, and their combination for the impacts on 
tracking performance and speed. Specifically, ECO-HC using 
hand-crafted features can achieve a good trade-off between performance 
and speed on the CPU device. Moreover, multi-feature fusion (Bertinetto 
et al., 2016b; Bhat et al., 2018; Ma et al., 2015; Kang et al., 2023) can 
effectively compensate for inadequate expression of a single feature. 
Normally, distinct features play different roles in various tracking 
challenges, so it is practicable to improve tracking performance by 
integrating multiple features. However, based on the current research 
progress in feature extraction (Christoph et al., 2022; Yan et al., 2021; 
Chen et al., 2021), we can see that single-layer CNN features seem to be 
more popular, especially the use of end-to-end deep features (Martin 
et al., 2019; Bhat et al., 2019) further improves the inadaptability of 
simple pre-trained features. In addition, recent one-stream trackers (Ye 
et al., 2022; Cui et al., 2023; Gao et al., 2023) adopt ViT architecture to 
build joint feature extraction and feature fusion. HIPTrack (Cai et al., 
2024) utilized historical locations and visual features to generate his
torical cues to enhance tracking performance. Considering that using a 
Vision Transformer (Alexey et al., 2021; Liu et al., 2021) as a feature 
extraction backbone will result in higher training and inference costs, 
we still use CNN as the feature backbone network. Although we have 
noticed that current multi-feature fusion often involves effectively 
fusing different feature layers of the same backbone network, classical 
ECO and UPDT (Martin et al., 2017; Bhat et al., 2018) also adopted the 
approach of fusing hand-crafted features with deep features. Therefore, 
we are wondering if hand-crafted features can be encoded into the deep 
network to achieve end-to-end learning. Hence, we draw lessons from 
some works (Bertinetto et al., 2016b; He and Huang, 2025) to imple
ment a color prompt-guided encoder for complementary learning.

Failure Detection: The function of failure detection is convenient 

for updating the discriminative target model online. Early DCF-based 
trackers (Henriques et al., 2015; Bertinetto et al., 2016b) adopted a 
fixed moving average interpolation method to update the target model 
based on a new predicted sample. Given the redundancy of updating 
samples, ECO(Martin et al., 2017) updated the target model using an 
interval scheme. The convolution kernels of recent DCF-like trackers 
(Wang et al., 2021; Martin et al., 2019; Bhat et al., 2019; Christoph et al., 
2021) are online optimized with sample memory. Correct model 
updating is conducive to maintaining and enhancing the discriminative 
ability of target models, but it may be destroyed by incorrect targets 
when the target is in complicated tracking scenes. Therefore, it is 
necessary to analyze the tracking results and make appropriate update 
control. Under normal circumstances, the output of the DCF target 
localization module is a response map approaching a Gaussian distri
bution, so some works (Martin et al., 2019; Wang and Liu, 2017; Bolme 
et al., 2010) developed feasible solutions from the response map. MOSSE 
(Bolme et al., 2010) calculated the mean and variance from the response 
map to obtain the peak to sidelobe ratio (PSR), the PSR can further 
perform failure detection. Due to the inaccuracy of PSR, APCE(Wang 
and Liu, 2017) improved PSR score criterion to realize a high-confidence 
update. PSR and APCE make decisions based on a comparison of the 
response map and the set threshold, but do not consider multiple 
tracking scenarios. ATOM (Martin et al., 2019) considered the hard 
negative sample to devise a hard negative mining (HNM) strategy, 
which thinks about the diverse target status, that is not found, normal, 
hard negative, and uncertain. The strategy is also applied to the DiMP 
variants (Wang et al., 2021, 2024; Bhat et al., 2019; Martin et al., 2020; 
Christoph et al., 2021). Moreover, He et al. (2022) proposed a voting 
decision method as an auxiliary failure detection mechanism, and this 
strategy does not require extra network training. Since PSR and APCE 
mentioned above did not think over the secondary peak, He et al. 
(2023b) presented an all-new score index called primary and secondary 
peak mean energy, these score indexes are combined with HNM for use. 
Apart from designing strategies based on response maps, some re
searchers (Yan et al., 2021; Cui et al., 2024; Chen et al., 2022a; Chris
toph et al., 2021; Bhat et al., 2020; Dai et al., 2020; He and Chen, 2022) 
also offline trained an extra network branch to detect tracking failure. 
Unlike many methods that use additional networks, our proposed po
sition constraint mechanism is a low-cost and portable approach. 
Moreover, a learnable query token (Xie et al., 2024) is used for achieving 
target context-aware learning. This approach adopts dynamic token 
fusion instead of directly replacing templates to achieve updated 
learning of visual tracking.

3. Proposed method

Encoding an RGB color image into deep feature maps through CNN 
networks is a common practice. Under the traditional DCF architecture, 
HOG features (Henriques et al., 2015) once become the preferred 
manual feature and achieve good tracking performance. Moreover, the 
combination of color features and HOG features (Martin et al., 2017; 
Bertinetto et al., 2016b; Bhat et al., 2018) can achieve a better perfor
mance improvement. With the unified tracking paradigm of deep 
learning, extracting or fusing features by learnable methods has become 
a popular research point. However, fusing multiple domain features 
instead of multi-layer features from a single backbone network has not 
been effectively explored. The primary task to be addressed in this 
article is to encode plain color information into deep networks. We first 
adopt color histogram statistics to obtain color target probability as a 
color prompt feature, which is combined into the deep network to guide 
the learning of more specific target features. Moreover, we adhere to 
common knowledge of object motion and present a position constraint 
mechanism to rectify the abnormal tracking results.
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3.1. Overview

Our proposed two modules are based on the Discriminative Model 
Prediction (Christoph et al., 2022; Bhat et al., 2019; Martin et al., 2020), 
which is illustrated in Fig. 1. Our improved trackers adopt the 
state-of-the-art SuperDiMP and ToMP as the baseline trackers. Taking 
SuperDiMP as an example, SuperDiMP includes the target localization 
module of DiMP(Bhat et al., 2019) and the probabilistic bounding-box 
regression of PrDiMP (Martin et al., 2020). Especially, SuperDiMP can 
be decomposed into four stages: feature extraction, target localization 
and target scale estimation, and online model update. Firstly, the image 
patches from the training and test frames are preprocessed and input 
into the backbone network to extract deep feature maps. The backbone 
network adopts a pre-trained ResNet50 to obtain the conv4 x feature 
maps as image features. Moreover, the network weights before conv4 x 
layer will be frozen. In order to make the features obtained by the image 
classification network more suitable for visual tracking, SuperDiMP 
adds a convolutional block to obtain the learned feature expression. In 
this part, we propose a Color Prompt Encoder (CPE), which is aimed at 
encoding color information as a prompt to produce target-aware feature 
maps. We believe that CPE can provide the function of prompt guidance 
and target attention. The feature extraction stage composed of Backbone 
and CPE modules is formulated as 

xf =C p
(
Rc4 (xim)

)
. (1) 

Here, xim denotes an image patch (e.g., Test frame in Fig. 1). R denotes 
backbone

network (i.e., ResNet50) and the subscript indicates which layer of 
feature map the network outputs (e.g., c4 denotes conv4 x). C p denotes 
our proposed CPE module. The feature extraction component with our 
presented CPE is able to obtain more diverse

and specific target features xf , which are passed through the model 
predictor module

M to acquire the target model α (i.e., convolution kernel). The target 
model α from model predictor M convolve the test frame features xt

f to 
output the expected

Gaussian label scores yg ∈ Y .
In the actual training phase, since visual tracking only provides 

initial sample information, data augmentation is used to obtain the 
training samples of image features and response scores. The training 

samples Strain =
{(

xi
f , y

i
g

)}n

i=1
, i ∈ [1, n] is input into the model predictor 

M to acquire an target model α = M (Strain), n denotes the total number 
of training samples. The objective function for model predictor M is 
formulated as 

α= argmin
α

∑

(xf ,yg)∈Strain

r
(

α*xf , yg

)
+ βf(α). (2) 

Here, the objective function includes the residual function r( ⋅) and 
regularization term f( ⋅) weighted by a scalar β. The r( ⋅) computes an 
error between the response map R = α*xf and the Gaussian label yg, * 
denotes the convolution operation.

In the tracking inference phase, the target model α convolutes the 
test frame feature map xt

f to obtain a response map R t = α*xt
f , the 

location 
(
xl, yl

)
of the R t peak value is determined as the next frame 

target position. After requiring the coordinate 
(
xl, yl

)
from the target 

localization, the bounding box regressor based on IoUnet (Martin et al., 
2019) performs the target scale estimation. Different from target local
ization, the target scale estimation uses the conv3 x and conv4 x features 
to estimate the final target state, that is 

(
xs, ys,ws, hs

)
= S

(
Rc3 ,c4

)
, S 

denotes the target scale estimation module. Owing to the DCF-based 
tracker allowing storing target samples to online update the target 
model α, it is especially crucial to screen the target and pick out better 
samples for storage. Therefore, SuperDiMP adopts the HNM method 
(Martin et al., 2019) to analyze the target flags predicted by the target 
localization module, these flags are used to optimize the model predictor 
by adjusting the sample set and update the model learning rate online. 
Though the HNM method has achieved appreciable improvement ef
fects, which is often not enough in complex scenes. As a supplement, we 
devise a Position Constraint Mechanism (PCM) to constrain the position 
offset of the tracked target from conventional motion inertia.

3.2. Color prompt acquisition

ResNet is used as a general feature extraction backbone network, and 
the network weights are partially frozen during training. Therefore, 
SuperDiMP and ToMP adopt a learnable convolution block to get target 
classification features. However, the representational ability of single- 
layer feature map is limited, even if the used conv4 x feature layer of 
ResNet is not frozen. Considering the combination of color histogram 
information can achieve a gain effect in the traditional DCF framework, 
but

there are few reports under the deep network architecture. As is 
shown in Fig. 2, we adopt color histogram features to construct color 
target probability as a color prompt. We first refer to the mentality of 
Staple (Bertinetto et al., 2016b) to generate Color Target Probability 
(CTP). CTP is obtained by foreground and background probability maps. 
First, we demarcate the foreground mask mF = F(xim, ps) and back
ground mask mB = B(xim, ps) from the image patch based on the target 
position and scale ps (i.e., the red bounding box in Fig. 2). Here, F de
notes that only the RGB values of bounding box inside is counted as 
foreground color histogram, while the function of B is just the opposite. 
Next, we extract color histograms for foreground and background mask 
regions respectively, which are formulated as 

Fig. 1. Overview of our proposed Color Prompt Encoder (CPE) and Position Constraint Mechanism (PCM) based on Discriminative Model Prediction. (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Hhist(xim,m)=

CalHis
(

xim
β ∘m

)

sum(m)
,m ∈ [mF,mB]. (3) 

Here, the bin size β of histogram is 16 by default, xim ∈ [0,255]. ∘  denotes 
the

reserved RGB image region based on the foreground or background 
mask. CalHis( ⋅)

counts the same value of each pixel in the image region, sum( ⋅) de
notes the summation function. Finally, we obtain the color target 
probability map based on the foreground histogram map HF

hist and 
background histogram map HB

hist , which is formulated as 

P =
HF

hist
HF

hist + HB
hist + λ

. (4) 

Here, P denotes the color target probability, and the hyperparameter λ 
is set as 0.01, which can prevent the denominator of P from being zero.

To eliminate the interference of background probability information, 
we use the Hanning window to smooth P for attaining the ultimate 
color prompt map P c. After obtaining the color prompt map P c, we next 
will discuss in detail how to encode it into the deep network.

3.3. Color prompt encoder

In order to integrate the color prompt into deep networks properly, 
we propose the Color Prompt Encoder (CPE) to encode the color prompt 
into ResNet to guide the generation of target-aware feature maps. 
Considering the inconsistency between the dimensions of the color 
prompt and backbone features, we propose two methods, bilinear 

interpolation (BI) and patch embedding (PE), to maintain consistency 
between the two feature dimensions. In addition, we also propose a 
spatial-temporal attention PE module to achieve the fusion of color 
prompt (CP) features and deep features, the final encoding methods 
include BI_MLP, PE_MLP and PE_ATT.

As is show in Fig. 3, since the shape of our P c is the same as that of 
the original RGB image, the width and height sizes of the deep feature 
are down-sampled by stride 16, we initially perform a bilinear inter
polation method to resize the shape of P c as that of deep features, and 
then we use a multilayer perceptron (MLP) layer and a Sigmoid function 
to map P c, which is formalized as 

fP c = δ(MLP(γ(P c))). (5) 

Here, γ denotes the resize operation. The channels of MLP layer are 
(Wang et al., 2021; Alexey et al., 2021; Alexey et al., 2021, 2021; Javed 
et al., 2023), 3 is the input channel, 16 is the hidden channel and 1 is the 
output channels. As is shown in Fig. 3, the MLP layer is comprised of two 
CBRs (i.e., Conv3 × 3+BN + ReLU) and one 1 × 1 convolution (i.e., 
Conv1 × 1). The mapped features fP c is conducted element multiplica
tion with the deep features, which is formulated as 

fprompt = c3
br
(
Rc4 (xim)

)
⊗ fP c . (6) 

Here, c3
br denotes CBR. To make the feature prompt smoother, we use a 

Conv1 × 1 to process and an InstanceNorm to normalize fprompt features 
for obtaining the final target-aware classification features, which is 
formulated as 

xf =N
(

c1
(

fprompt

))
. (7) 

Fig. 2. Acquisition of Color Prompt. Color Prompt is obtained by the element-wise multiplication (⊗) of Color Target Probability (CTP) and Hanning window, while 
CTP is based on foreground and background histogram maps. Taking the input image dimension of 3 × 352 × 352 as an example, we can be seen that the color 
prompt feature map processed by the color prompt module has the same dimension as the original input image. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Structure of BI_MLP. The proposed BI-MLP module uses bilinear interpolation to resize the CP map, and adopts MLP and Sigmoid to obtain the CP attention 
map, which is attached to enhance the target perception effect.
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Here, c1 denotes Conv1 × 1, N denotes InstanceNorm layer.
The CPE module with BI_MLP mentioned above has expounded the 

basic components of CPE. Inspired by ViT, we adopt learnable patch 
embedding to directly down-sample the spatial size of the color prompt 
and increase its channel size. Similarly, MLP and Sigmoid are used to 
map color features to obtain color attention maps, which is formalized as 

fP c = δ(MLP(PE(P c))). (8) 

Here, PE denotes the patch embedding, which is CBR with Conv16 × 16 
with stride 16. The structure of the MLP layer is consistent with that of 
BI_MLP module. Since the CP channel mapped by PE is 256, the channels 
of MLP layer are (Javed et al., 2023).

As shown in Fig. 4, the proposed PE_MLP method adopts the same 
modules of BI_MLP to map and encode the color attention maps fP c and 
deep features.

The two tactics of encoding color prompts into deep features 
mentioned above have been introduced. We propose to replace MLP 
with a spatial and channel attention module to guide and prompt deep 
features from multiple dimensions. The detailed network structure is 
shown in Fig. 5, the channel attention module adopts adaptive average 
pooling to compress spatial dimensions, followed by the two-layer 
convolution kernels and a Sigmoid function mapping to obtain chan
nel attention maps, and the basic structure of the spatial attention 
module is similar, and the variation of the feature dimension size is 
indicated in Fig. 5. Finally, the concatenation operation by channel is 
used to fuse the spatial and channel feature maps, which is formulated as 

fprompt = cat(fb ⊗ SA(PE(P c)), fb ⊗CA(PE(P c))). (9) 

Here, fb = c3
br(Rc4 (xim)), SA denotes the spatial attention module, CA 

denotes the channel attention module, the cat denotes concatenation 
operation.

3.4. Position constraint mechanism

We make a detailed description for the proposed Color Prompt 
Encoder, which is beneficial to creating more diverse and specific target 
classification features. Furthermore, most DCF-based trackers are to 
seek a feasible target position by yielding a robust response map. 
However, the target model of these trackers will be updated online ac
cording to the initial annotated frame and the predicted results, so the 
screening of the predicted results is vitally crucial. Despite SuperDiMP 
and ToMP using the HNM method to reach an appreciable performance, 
the results obtained from the response map are not necessarily credible 
in complex scenes. In addition, the HNM method will output the final 
position offset and target status from the response map, yet it has the 
defect of insufficient utilization of position offset.

Accordingly, we propose the Position Constraint Mechanism (PCM) 
to identify tracked anomalies based on the position offset of the previous 

target position and the current predicted position, which is depicted in 
Fig. 6. The intention of PCM provides supplementary cues for the HNM 
method, which regulates updates of the sample memory and model 
learning rate (0.01 by default). The sample memory is used to store 
initial samples and predicted samples, and its capacity is set to a 
maximum of 50. In addition, the memory is added or replaced in the case 
of normal and hard negative, and the hard negative status will double the 
model learning rate (i.e., 0.02). The not found status determines the 
target as lost if the peak value of R is lower than 0.25. For uncertain 
status, the target state will also be output normally, but no update will be 
operated. Due to the complexity of tracking conditions, HNM cannot 
cover all aspects. Therefore, we propose a position offset constraint 
method that follows motion inertia to ensure the higher credibility of the 
updated samples as much as possible.

We can be seen from Fig. 6 that PCM mainly determines the target 
motion range based on the target position 

(
xt− 1

l , yt− 1
l

)
= argmax

(
R t− 1)

in the previous frame and the preset constraint radius π (i.e., red circle). 
If the target position 

(
xt

l , y
t
l
)

in the next frame is outside the circle, it is 
considered that the target motion is abnormal, which is formulated as 

οp =
⃦
⃦
(
xt− 1

l , yt− 1
l

)
−
(
xt

l , y
t
l
)⃦
⃦

2. (10) 

Here, οp denotes the position offset. In order to better measure the 
effectiveness of position offset οp, we set the constraint radius π based on 
the size of the initial target scale (w,h), which is formulated as 

π= d
̅̅̅̅̅̅
wh

√

2
. (11) 

Here, the parameter d is the displacement scale, which defaults to 0.8. In 
this PCM, the οp > π indicates that the predicted results are not rec
ommended to update the sample set Strain.

Moreover, the above-mentioned practice is for a single-frame case, 
and we have also considered the condition of multi-frame position 
offset. Firstly, we initialize the previous position storage space and up
date it using a first-in-first-out method. Subsequently, we calculate the 
position offsets between the current frame position.

(
xt

l , y
t
l
)

and multiple stored positions 
[(

xt− n
l ,yt− n

l
)
⋯
(
xt− 1

l ,yt− 1
l

)]
, that 

is 
[
οt− n

p ⋯οt− 1
p

]
, and finally take the average value for comparison with 

the constraint radius π.

3.5. Training details

Our CPE and PCM modules can be readily combined with recent 
DCF-based frameworks, such as SuperDiMP and ToMP. We substitute for 
the original ClsFeat with our CPE module to perform end-to-end 
training. The obtained target classification features by our method are 
fed into the model predictor M for getting a stronger target model α. Our 
training settings are consistent with SuperDiMP and ToMP trackers 

Fig. 4. Structure of PE_MLP. The proposed PE_MLP module uses patch embedding to down-sample and encode the CP map, and it also adopts MLP and Sigmoid to 
obtain the CP attention map.
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except for the CPE module, yet our training devices are two NVIDIA 
GeForce RTX 3090 GPUs. Moreover, the PCM method adopts the pre
dicted position from the tracking model and has no training demand, 
which can be regarded as a screening method to enhance the stability of 
the model update.

4. Experiments

4.1. Experimental details

To verify the practicability of our designed CPE and PCM modules, 
we integrate them into the recent DCF-based trackers (Christoph et al., 
2022; Bhat et al., 2019; Martin et al., 2020) (i.e., SuperDiMP and ToMP).

We should note that SuperDiMP uses ResNet50 as the backbone 
network, and the target localization and scale estimation network is 
built in the form of convolutional networks with a training epoch of 50. 
ToMP uses two versions, ResNet50 and ResNet101, but actual testing 
has found that ResNet101 is not better than ResNet50. The target 
localization uses Transformer to build the encoder and decoder archi
tecture, and then uses ltrb representation (Tian et al., 2019) to imple
ment bounding box regression. Due to the complexity and slow 
convergence of the Transformer structure, the ToMP training epoch is 
300. Given that SuperDiMP and ToMP have similar structures, our 
proposed CPE and PCM are also applicable to both. To sum up, we 

mainly conduct ablation experiments based on SuperDiMP, and perform 
the State of the Art (SOTA) experiments about SuperDiMP and ToMP.

Our improved trackers show comparative performances on six 
challenging benchmarks including OTB100(Yi et al., 2015), NFS 
(Galoogahi Hamed et al., 2017), UAV123 (Mueller et al., 2016), LaSOT 
(Fan et al., 2019), and TrackingNet (Matthias et al., 2018) and VOT2020 
(Matej et al., 2020). Our approaches are implemented in Python using 
PyTorch, and all experiments are running in the GPU processor of 
GeForce RTX 4070. The code, raw tracking results, and trained models 
are available at https://github.com/hexdjx/VisTrack.

4.2. Ablation study

To demonstrate the effectiveness of our proposed CPE module and 
PCM method, we perform synthetical ablation studies on OTB100, NFS, 
and LaSOT.

Color Prompt Encoder: Due to the three prompt fusion schemes 
proposed by our CPE module, we first use BI_MLP to realize the CPE 
module for ablation analysis. Firstly, we replace the ClsFeat block of the 
SuperDiMP and ToMP50 with our CPE module to verify its validity. 
Since the color prompt features used during the training process are 
based on the given target states of the training and testing samples, but 
in the online tracking process, except for the first frame where the target 
state is provided, the remaining target states are predicted by the 

Fig. 5. Structure of PE_ATT. The proposed PE_ATT module uses patch embedding to down-sample and encode the CP map, and it adopts spatial and channel 
attention to replace the origin MLP layer.

Fig. 6. Visualization of the Position Constraint Mechanism (PCM). We provide an intuitive explanation for the search region, target state, and constraint radius in 
image frame #0010 from the Basketball sequence of OTB100. The red circle is drawn based on the previous target position as the center and the devised constraint 
radius. The concept of our proposed PCM is that the target localization in the next frame is outside the circle to indicate tracking anomalies, without considering it as 
a model update sample. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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tracking model. Therefore, it is extremely important to obtain color 
prompt features closer to the actual value to guide the generation of 
target-aware features. We discuss four approaches to solve the problem 
of color prompt feature generation in the tracking inference process. To 
explore how the Color Prompt (CP) should be obtained, we perform 
comparative experiments for four CP update methods on OTB100, NFS 
and LaSOT. ①① Initial CP: using only the first frame CP to guide the 
obtainment of prompt features, ②② Update CP per frame: generating CP 
directly from the previous frame, ③③ Moving average update: when the 
normal and hard negative statues are given, we update CP with moving 
average method, that is P u

c = (1 − η)P u
c + ηP c, η = 0.01 is learning 

rate, P u
c denotes the updated CP, P c denotes the current CP, ④④ Moving 

average update with replace: It’s a bit similar to the combination of the 
②② and ③③, under normal tracking conditions, each frame is updated, and 
in other cases, the updated CP is used as a replacement. We can see from 
Table 1 that proper update has positive impacts to tracking results. 
Compared with SuperDiMP, the updated CP (i.e., ③③) acquires AUC gains 
of 0.7, 1.4 (%) on NFS and LaSOT datasets. Moreover, we can see that 
using the updated CP based on ToMP50 can also achieve good results, 
and especially will bring about obvious improvement with Precision and 
AUC gains of 1.1, and 1.2 (%) on NFS dataset.

In addition, we also conduct experiments on the effectiveness of the 
Hanning Window used in Fig. 2 for smoothing CTP to obtain color 
prompt features, which aims at demonstrating the impact of with and 
without the Hanning Window on tracking results. As shown in Table 2, 
we choose two CP generation methods (i.e., ②② and ③③) as comparison 
baselines, and the results show that without the Hanning Window can 
also achieve not bad results, especially CPE for ③③ choice can also obtain 
relative Precision and AUC increases of 1.0, and 0.9 (%) on NFS dataset.

Based on the results in Tables 1–2, we use the AUC score of LaSOT as 
the measure for the optimal selection of method combinations. Ulti
mately, we determine the moving average update CP (i.e., ③③) with the 
Hanning Window method as the optimal choice for further ablation test.

The above ablation experiments are conducted based on BI_MLP in 
Fig. 3. In order to further test the PE_MLP and PE_ATT methods, we 
directly compare the performance of diverse trackers based on the 
optimal combination obtained from BI-MLP. As shown in Fig. 7, we also 
use the add and cat operations commonly used in the network to explore 
the case of directly fusing the embedding vectors obtained from PE with 
deep features. Compared to the baseline SuperDiMP, most CPE_* 
trackers have shown improvement, except for a 0.6 % decrease in per
formance of CPE_pe_att on NFS dataset. From the results of the naive 
methods of add and cat on the OTB100 and NFS datasets, the improve
ment effect is more obvious, but the performance on LaSOT is not as 
good as the method introduced in Sec. 3.3. Based on LaSOT analysis, we 
believe that CPE_bi_mlp is an effective method for fusing color prompt 
features with deep features.

Position Constraint Mechanism: According to the above ablation 

experiments in the CPE module, we adopt the bilinear interpolation to 
down-sample the CP feature and use the moving average update CP 
method with Hanning Window to validate the feasibility of PCM. As 
shown in Table 3, PCM showed a significant Precision and AUC 
improvement compared to SuperDiMP on the OTB100 and NFS datasets, 
and a certain improvement on LaSOT, The Precision has been improved 
by 1.4, 2.2, and 0.4 (%), and the AUC has been improved by 0.7, 1.1, and 
0.4 (%), respectively. However, we also found that the combination of 
PCM and CPE is not very effective, but it has an improvement effect on 
LaSOT. We speculate that this is because the tracking state results from 
PCM may interfere the CP inference updates of CPE.

In addition, we also conduct ablation experiments for the constraint 
radius π in Eq. (11) and test which strategy is more feasible. These 
strategies include the fixed threshold (i.e., π = 20), which is derived 
from the precision plot adopting a reported threshold of 20 pixels, the 
threshold counted in the initial frame, and the dynamic threshold based 
on the target scale of the previous frame. As shown in Table 4, we test 
the comparison of three threshold strategies based on the CPE method. 
The results show that the fixed and dynamic thresholds are not as good 
as the initial threshold. Especially for the performance on the LaSOT 
dataset, the fixed threshold results in an AUC decrease of 0.9 %, while 
the dynamic threshold results in an AUC decrease of 2.1 %.

The PCM described above is based on a single-frame position 
constraint, only considering the position offset between the previous 
frame and the current frame. We also discuss the impact of multi-frame 
positions, such as 3 and 5 frames, on tracking performance, as shown in 
Table 5. We use three different frames to construct PCMs, which are 
embedded into SuperDiMP and ToMP50 trackers with integrated CPE 
module. The experimental results show that using 1-frame and 3-frame 
PCMs are relatively better. In addition, we also test whether using 
average or maximum position offset for 3-frame PCM is more appro
priate compared to the constraint radius π, as shown in Table 6. We can 
see that the performance on all three datasets indicates that using 
average position offset results is relatively optimal.

Overall, the tracking performance of PCM can achieve certain in
creases by using 1-frame or 3-frame position offset averaged and initial 
frame threshold on the OTB100 and LaSOT datasets, but that of NFS is 
poor.

In order to present the improvements of CPE and PCM on SuperDiMP 
and ToMP50 more concisely, we visualize the Precision plot and Success 
plot of LaSOT, where the legend lists the Precision and AUC scores of the 
trackers. As shown in Fig. 8, it can be seen that the proposed CPE has a 
significant improvement on SuperDiMP, achieving a relative gain of 2.1 
% and 1.4 % in terms of Precision and AUC. The further improvement of 
CPE by PCM is relatively small, achieving a relative gain of 0.2 % Pre
cision and 0.1 % AUC based on ToMP50+CPE. In a word, the proposed 
CPE module and PCM methods are feasible and have the effect of 
improving tracking performances.

Table 1 
Analysis of the generation methods of Color Prompt (CP) in the inference stage and their 
impacts on the SuperDiMP and ToMP50 trackers in terms of precision (Prec.) and area 
under the curve (AUC) scores. The two best results are shown in bold red and blue fonts.
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4.3. Comparison to the state of the art

In Sec. 4.2, we conduct a series of ablation experiments on three 
datasets to verify the availability of the CPE and PCM modules. The 
experimental results show that our proposed approaches have favorable 
improvement effects, we uniformly embed the two components into 
SuperDiMP and ToMP50 for State of the Art (SOTA) experiment, which 
is called ProDiMP and ProToMP trackers successively. We compare our 
ProDiMP and ProToMP trackers with the SOTA trackers on six chal
lenging tracking benchmarks.

LaSOT (Fan et al., 2019): Table 7 shows the comparison results in 
terms of Precision and AUC scores for various trackers. LaSOT dataset 

contains most of the longer video sequences, averaging 2500 frames for 
each video sequence, which makes this dataset more challenging than 
other datasets. Therefore, our proposed color prompt encoder and po
sition constraint mechanism is to enhance and maintain the discrimi
native ability of the target classifier. This is crucial for long video 
sequences, because the longer the video sequence, the more likely the 
model will be polluted by the erroneous background information. We 
choose the recent DiMP(Bhat et al., 2019), PrDiMP (Martin et al., 2020), 
SuperDiMP, TrDiMP (Wang et al., 2021), TransT (Chen et al., 2021), 
STARK-ST50 (Yan et al., 2021), Sim-B/32 (Chen et al., 2022b), CSWinTT 
(Song et al., 2022) and ToMP50 (Christoph et al., 2022) are considered 
for comparison. Our proposed CPE and PCM approaches integrated into 

Table 2 
Comparative analysis about with (w/) and without (w/o) Hanning Window in Fig. 2 based 
on two CP generation methods using ②② Update CP per frame and ③③ Moving average 
update, and its impact on the proposed CPE embedded into SuperDiMP tracker in terms of 
Prec. and AUC scores.

Fig. 7. Illustration of Success plot on OTB100, NFS, and LaSOT. The legend displays the AUC score for diverse improved CPE_* trackers.

Table 3 
Analysis of the CPE and PCM modules embedded into the SuperDiMP tracker and their 
impacts on the tracking performance in terms of Prec. and AUC scores.

Table 4 
Analysis of PCM with three thresholds for the constraint radius π in Eq. (9) based on the 
CPE method and their impacts on the tracking performance in terms of Prec. and AUC 
scores.
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Table 5 
Analysis of PCM using the multi-frame position constraint based on the CPE method and 
their impacts on the tracking performance in terms of Prec. and AUC scores.

Table 6 
Analysis of the PCM with 3-frame position constraint, considering whether to use the 
average or max position offset result as comparison with threshold π, and their impacts on 
the tracking performance in terms of Prec. and AUC scores.

Fig. 8. Illustration of Precision plot and Success plot on LaSOT. The legend displays the Precision and AUC scores for diverse improved trackers and baseline trackers.

Table 7 
Comparison results of our ProDiMP and ProToMP trackers compared with state-of-the-art 
trackers on the LaSOT, TrackingNet, OTB100, NFS, and UAV123 datasets in terms of 
Precision (Prec.), Normalized Precision (Norm. Prec.) and AUC scores (%).
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SuperDiMP and ToMP50 achieve competitive performance, out
performing SuperDiMP with a relative gain of 2.1 % and 1.4 % (%) 
respectively. In addition, compared with Transformer-based trackers, 
suach as TrDiMP, TransT, STARK-ST50 and ToMP50, ProToMP exhibits 
competitive performances. From the results in Table 7 and it can be seen 
that there is a significant improvement on the pure CNN-based tracker, 
such as SuperDiMP, while the Transformer-based tracker does not show 
significant improvement on this dataset. However, ProToMP can still 
achieve good results. Overall, it can be seen that the proposed methods 
have a certain significance in improving tracking performances.

TrackingNet (Matthias et al., 2018): The test set of the TrackingNet 
dataset also is used to test our method, which is comprised of 511 video 
sequences. The experimental results are provided in Table 7. Our Pro
ToMP tracker achieves AUC score of 81.8 %, outperforming the 
state-of-the-art trackers such as TrDiMP(Wang et al., 2021), TransT 
(Chen et al., 2021), STARK-ST50 (Yan et al., 2021), Sim-B/32 (Chen 
et al., 2022b)and ToMP50 (Christoph et al., 2022). In addition, 
compared with SuperDiMP, we can see that our ProDiMP promotes the 
SuperDiMP with a relative AUC gain of 0.4 %, and increasing by 0.7 and 
0.4 (%) in Precision and Normalized Precision. Moreover, our ProToMP 
also obtains competitive performance compared to ToMP50(Christoph 
et al., 2022), which promotes the ToMP50 with relative increases of 1.0, 
0.5, and 0.6 (%) in Precision, Normalized Precision, and AUC respec
tively. The competitive results on this dataset further demonstrate the 
effectiveness of our proposed methods.

OTB100(Yi et al., 2015): OTB100 is comprised of 98 video sequences 
with 100 tracked targets. Table 7 provides the AUC scores of our Pro
DiMP and ProToMP compared with state-of-the-art trackers. As can be 
seen from the table contents, our ProDiMP and ProToMP achieve an 
AUC score of 70.4 and 70.2 (%), surpassing SuperDiMP and ToMP50 
with a 0.3 and 0.1 (%) AUC gain. Moreover, ProDiMP outperforms the 
recent SOTA trackers (e.g., STARK-ST50 (Yan et al., 2021), TransT (Chen 
et al., 2021)). Moreover, DiMP, PrDiMP, STARK and ToMP use a 
ResNet50 as backbone by default for a fair comparison. The experi
mental results further prove the effectiveness of the proposed methods.

NFS(Galoogahi Hamed et al., 2017): We evaluate our tracker on the 
30 fps (frames per second) version of the dataset. This dataset is 
composed of 100 video sequences with fast-moving target objects. As is 
shown in Table 7, our ProToMP acquires SOTA performance, which gets 
an AUC score of 67.5 %, surpassing ToMP50 with a 0.6 % gain. More
over, our method also outperforms the recent TransT and STARK.

UAV123 (Mueller et al., 2016): The UAV dataset is comprised of 123 
aerial videos, which are aimed at testing trackers applicable to UAVs. 
Among the compared methods, Table 7 reveals that our ProDiMP and 
ProToMP trackers achieve an AUC score of 69.2 and 68.9 (%), which 
obtains competitive performance compared with the other 
state-of-the-art approaches (e.g., STARK). Although the tracking per
formance of ProToMP is not as good as CSWinTT and ToMP50, our 
ProDiMP surpasses SuperDiMP with a gain of 1.5 %.

VOT2020 (Matej et al., 2020): we evaluate our ProDiMP and Pro
ToMP trackers on the 2020 edition of the Visual Object Tracking (VOT) 
short-term challenge. Although the dataset contains 60 videos with 
segment mask annotation, we only compare it with the tracker that 

predicts the bounding box, because our tracker will predict the bounding 
box. The trackers are evaluated in the multi-start protocol and are 
ranked based on the EAO metric that considers tracking accuracy 
(average overlap over successful frames) and robustness (failure rate). 
The results in Table 8 show that ProDiMP achieves the first accuracy and 
EAO. Our ProToMP acquires the first robustness. Especially, ProDiMP 
achieves a 0.798 robustness and 0.311 EAO, surpassing SuperDiMP in 
terms of robustness (+7 %) and EAO (+0.6 %). And ProToMP achieves a 
0.815 robustness and 0.305 EAO, which is superior to ToMP50 in terms 
of robustness (+2.6 %) and EAO (+0.8 %).

4.4. Qualitative analysis

The above ablation and SOTA experiments mainly demonstrate the 
effectiveness of the proposed methods from a quantitative perspective, 
and can effectively improve tracking results. Further, we also qualita
tively demonstrate the tracking effect of representative video sequences 
in Fig. 9. We visualize the tracking results of SuperDiMP, ToMP50 and 
our trackers (i.e., ProDiMP and ProToMP) on the 4 challenging se
quences from OTB100 and LaSOT. We select two video sequences (i.e., 
Basketball and Skating2_1) from the OTB100 short-term dataset and two 
video sequences (i.e., dog-15 and zebra-17) from the LaSOT long-term 
dataset for qualitative analysis. As shown in Fig. 9, the number of 
video frame for the four video sequences are 725, 473, 5009, and 2964 
respectively. We display four representative frames, among which the 
first frame shows the bounding box for the tracked target. We can see 
from Fig. 9 that our ProDiMP and ProToMP trackers can accurately 
predict the target objects despite appearing occlusion, deformation and 
background clutter. In frame #0470 of Basketball sequence, our trackers 
mistake the similar distractor as the target, but SuperDiMP and ToMP50 
can also obtain improper bounding boxes. In Skating2_1 sequence, we 
note that our trackers can basically track the female skater in the pres
ence of distractor, yet our SuperDiMP and ToMP50 method will be 
disturbed by background clutter. In frame #0110 of dog-15 sequence, 
SuperDiMP will lose the tracked target and mistakes the dog in the 
mirror for the target. In zebra-17 sequence, SuperDiMP and ToMP50 is 
not robust enough and can be affected by similar objects and self- 
deformation. Moreover, in frame #1258, SuperDiMP gradually tracks 
the background information, while ToMP50 only tracks the part of the 
target. However, although our trackers are closer to the tracked area for 
Ground Truth, updating the model as usual at this time will also cause 
contamination of the tracking model. From frame #2934, it can be seen 
that the compared trackers still maintain the correct tracking of the 
target. We have found that the tracking bounding box is not accurate 
enough and surrounding objects are erroneously prone to be identified 
as the target in complex scenarios. Although our tracker has meritorious 
robustness to complex situations such as deformation, distractor, and 
background clutter, we also found that there is a gap from the labeled 
bounding box.

4.5. Discussion

Sec. 4.2 and 4.3 mainly focus on quantitative experimental 

Table 8 
State-of-the-art comparison of bounding box-only methods on VOT2020ST in terms of 
Accuracy (A), Robustness (R), and expected average overlap (EAO).
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comparison and analysis. Sec. 4.4 visualizes the tracking effect from a 
qualitative perspective and analyzes the results. We conduct a compre
hensive discussion based on the experimental results of three Sections. 
Our main contributions in this article are to propose a Color Prompt 
Encoder (CPE) to improve insufficient feature expression and a Position 
Constraint Mechanism (PCM) to improve inaccurate updates.

In the aspect of CPE, mainly including the acquisition of color 
prompts and how to encode color prompts into deep networks, our 
ablation experiments on OTB100, NFS, and LaSOT datasets are con
ducted by integrating the proposed CPE and PCM methods into Super
DiMP and ToMP50 trackers. In the acquisition of Color Prompt (CP), we 
experiment with four different methods of updating CP and whether or 
not there was a Hanning Window. The experimental results show that 
appropriate updates have a positive effect on tracking performance. 
Based on the results in Tables 1 and 2, we have decided to use the 
moving average update CP method with the Hanning Window method 
as the optimal color prompt. Immediately after, we compare the mul
tiple encoding methods: BI_MLP, PE_MLP, PE_ATT, PE_cat, and PE_add, 
and the first three methods are elaborated in Sec. 3.3. Based on the 
LaSOT result of Fig. 7, we believe that BI_MLP is a more effective method 
for fusing color prompt features with deep features.

In the aspect of PCM, we propose a low-cost and portable position 
constraint mechanism, our experimental results in Table 4 show that it 
can effectively improve the tracking performance of SuperDiMP, but 
when combined with CPE, it will result in lower tracking performance 
on NFS dataset. In addition, the hyperparameter experiment of the 
constraint radius π also indicates that the selection of constraint radius 
has a significant impact on the effectiveness of PCM. Specifically, 
Table 5 also conducts experiments on the multi-frame position offset 
constraint, while Table 6 examines the impact of the experimental 
average and maximum aggregation methods on the 3-frame PCM. In 

fact, the results of 3-frame are also acceptable, but the LaSOT method is 
ultimately chosen for single frame PCM method.

From the results of various ablation experiments, it can also be seen 
that our CPE and PCM modules using different settings on OTB100, NFS, 
and LaSOT will produce diverse results, making it difficult to guarantee 
which configuration can achieve ideal results on all datasets. However, 
overall, the proposed method undoubtedly improves tracking perfor
mance. Based on the results of the ablation experiments, further SOTA 
experiments are conducted on six datasets. Since our tracking frame
works is based on CNN (i.e., SuperDiMP) and the combination of CNN 
and Transformer (i.e., ToMP50), we mainly compared our trackers with 
this type of SOTA methods. The results presented in Tables 7 and 8
indicate that our proposed ProDiMP and ProToMP exhibit superior 
performance compared to SuperDiMP and ToMP50. Moreover, 
compared with TrDiMP, TransT, STARK, CSWinTT, etc. methods, our 
trackers can obtain SOTA results.

Normally, the effectiveness of tracking performance is mainly 
measured by the Precision and AUC results on mainstream tracking 
benchmarks, Fig. 9 also presents the visual tracking effect of our pro
posed trackers and baseline trackers. Experimental visualization and 
analysis show that our trackers can effectively alleviate the interference 
of complex scenes such as similar objects and deformations. Although 
our tracker can effectively improve the accuracy of bounding boxes, the 
PCM method has shortcomings for occlusion situations. In the future, we 
will further consider the method of comparing appearance feature 
similarity for joint decision-making. In addition, the proposed CPE 
currently mainly enhances the target-aware ability of CNN, and it is 
worth exploring how to use Transformer architecture to achieve the 
fusion of color prompt features.

Fig. 9. Visualization results of the proposed trackers (i.e., ProDiMP and ProToMP) and Baselines (i.e., SuperDiMP and ToMP50) on several challenge sequences from 
OTB100 and LaSOT datasets. We can see that our trackers can achieve a more accurate tracking effect.
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5. Conclusions

In this paper, we are devoted to enhancing the discriminative ability 
of the recent DCF-based trackers from the perspective of the feature 
extraction and model update. To this end, we construct color prompt 
features and propose three encoding methods, including BI_MLP, 
PE_MLP, and PE_ATT, to implement the construction of the color prompt 
encoder. The color prompt encoder in the feature extraction stage can 
yield the target-aware feature expression for training the robust target 
model. Moreover, we propose a practical position constraint method for 
storing samples with high confidence and updating the model properly. 
The position constraint method experiments with constraint radius and 
multi-frame position offset cases. Ultimately, the ablation study and 
SOTA comparison indicate that our proposed methods are feasible, but 
we also found that there are differences in performance gains between 
different scheme settings and method combinations. Overall, our 
methods achieve state-of-the-art performances on six benchmarks, 
showing the potential ability of our approaches.

In the future, in terms of feature extraction, we will discuss replacing 
CNN with ViT backbone and improving the color prompt encoding 
method to achieve stronger feature fusion and performance improve
ment. In terms of online updates, the position offset constraint can ac
quire not satisfactory outcome when there is occlusion, so we plan to 
propose a joint update decision based on appearance feature matching. 
Moreover, we will further explore the improvement and application of 
color prompt and position constraint approaches in pure Transformer- 
based trackers to get stronger feature representation.
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